## ## ####
Одной строкой:


Индивидуальная биогазовая установка

Наука & практика / Технологии & инновации  •  Опубликовано 06.02.2012  •  2162 просмотров
Индивидуальная биогазовая установкаВ России, зимой, кроме потребления выработанного биогаза на технологические нужды, львиная его доля идет на отопление просторных помещений (их объем определяется требованиями пожаро(взрыво)безопасности), где размещаются биореакторы. Поэтому производство биогаза в России логично осуществлять только летом, с размещением биореактора в солнечном соляном пруду, с использованием солнечной энергии, и его производство (биогаза). Для зимнего периода, возможно аккумулировать часть солнечной энергии в биогазе.

Технологии использования отходов растениеводства и животноводства для производства биогаза (биометана) подробно описаны в различных научных работах. Эти технологии более всего подходят для удаленных районов с низкой плотностью населения, энергообеспечение которого связано с высокими затратами по доставке органического топлива и передаче электроэнергии.

Однако при естественной сушке навоза в атмосферу выделяется много биометана и СО2, что приводит к загрязнению окружающей среды и нерациональному использованию отходов. Так, в США в настоящее время на отходы животноводства приходится около 8% связанных с деятельностью человека выбросов биометана. Поэтому в США для хранения животных отходов часто используются крытые пруды. При этом для сбора биогаза, выделяющегося из отходов (как правило, при психофильном режиме) применяется так называемая плавающая крыша, вершина которой снабжена клапаном и системой труб для отвода биогаза потребителю.

Развитие микробиологической отрасли по анаэробному превращению органических веществ – это актуальная задача сегодняшнего дня. В зависимости от конкретной обстановки на первый план может выходить прямое получение энергии, экономия энергии в процессе очистки органических стоков, получение исходных восстановленных веществ из возобновляемых источников энергии (ВИЭ), получение энергии в виде моторного топлива, удобрений длительного действия.

Использование энергии из возобновляемых источников представляется возможностью решения ряда глобальных и региональных проблем, вызванных развитием энергетики, основанной на ископаемом топливе. Современное использование биомассы можно считать использованием возобновляемых ресурсов только в том случае, если система обеспечивает соответствующее возрастание урожая. Определенные надежды часто возлагают на фотосинтез водорослей, которые могут расти значительно быстрее, чем происходит наземная вегетация. Однако для культивирования водорослей требуется концентрация углекислоты и создание установок, сопоставимых по сложности с гидропоникой. Поскольку последняя дает пищевую продукцию, она, бесспорно, будет иметь приоритет. Вообще в альтернативе: пища или топливо – приоритет должен быть отдан пище.

Традиционная энергетика, основанная на газе, нефти, угле, несомненно приводит к исчерпыванию резервуара О2 быстрее, чем «зеленое топливо», одновременно производящее кислород, но она не требует таких огромных площадей и главное не конкурирует с производством пищи.
Тем не менее, анализ возможностей «зеленого топлива» как основного источника энергии приводит к пессимистическим выводам.
Оптимистический прогноз возникает лишь при рассмотрении возможностей метаногенеза органического сырья (отходов) с помощью анаэробных микроорганизмов как многоцелевого процесса. Этот процесс, резко уменьшающий расход энергии при переработке, осуществляется сообществом микроорганизмов, которые способны из самых разнообразных органических веществ (кроме лигнина) образовывать смесь биометана с углекислотой, получившую название «биогаз».

Анаэробная переработка органических веществ, в биогазовых реакторах представляет собой сложный процесс. Он осуществляется в три основных этапа при участии целого ряда микроорганизмов. Первоначально группа микроорганизмов преобразует органические вещества в форму, которую вторая группа микроорганизмов использует для выработки органических кислот. А затем биометан-производящие анаэробные бактерии разлагают эти кислоты и завершают процесс переработки. Анаэробные бактерии способны «переваривать» органический материал в отсутствии кислорода, в отличие от аэробного разложения при компостировании, которое требует много кислорода. Более сухой навоз, сложенный в кучи, под действием микроорганизмов-аэробов понемногу разлагается, и разогревается в процессе разложения до 50 – 70 ⁰С.

Для увеличения концентрации метанобразующих бактерий в реакторе и интенсификации образования биометана используют способность микроорганизмов хорошо адсорбироваться на поверхностях твердого тела. В качестве иммобилизующих поверхностей используют стекловолокно, капроновые нитки, активированный уголь и другие материалы, причем выход биогаза увеличивается в 2 раза.

Теоретические и практические исследования в области биологической переработки растительной биомассы, отходов животноводства и т.д. в биогаз показали, что активность бактерий и соответственно объем биогаза, получаемого в результате переработки, при прочих равных условиях напрямую зависит от температуры. Чем выше температура, тем быстрее идет процесс переработки, больше вырабатывается биогаза, меньше остается бактериальных и вирусных болезнетворных организмов. Так, при температуре от 52 до 56 ⁰С выработка биогаза идет в 1,5 – 3 раза быстрее, чем при 30 – 40 ⁰С, и достигается эффективное обеззараживание получаемых удобрений.

Сегодня интенсивность метаногенерации является одним из основных показателей эффективности технологии получения биогаза, и её повышение – приоритетная задача научных исследований и разработок. Устойчивый процесс метаногенеза может быть осуществлен лишь при равномерной подаче однородного субстрата. В этом случае накапливается микрофлора, осуществляющая основной маршрут, и скорость процесса возрастает. Какие-либо перебои или изменения в составе субстрата, изменения физико-химического режима приводят к тем более длительной задержке, чем интенсивнее шел процесс до этого. Таким образом, не может быть универсальной установки для переработки органического сырья в биометан. Действующим инструментом является не сооружение, а микробное сообщество в нем. Поэтому рекордные возможности метаногенеза обычно бывают на откормочных пунктах, там, где длительная стабилизация состава навоза.

Недостатком подавляющего большинства эксплуатируемых в настоящее время биогазовых установок различных типов является то, что у них поддержание термофильного режима переработки отходов в биогаз обеспечивается за счет недопустимо высокого расхода различных высоколиквидных топлив (за счет сжигания ⅓ части вырабатываемого биометана). А при эксплуатации их в России зимой для них требуются изолированные помещения (укрытия), а значит и дополнительный расход энергии на поддержание в этих помещениях микроклимата.

Возвращаясь к схемам возможных микробиологических путей переработки органических веществ в топливо, следует отметить, что только метаногенез имеет обратный маршрут к биомассе. Сброженный осадок метантенка представляет удобрение длительного действия, которое возвращает питательные элементы на поля и, следовательно, экономит энергию, затрачиваемую на удобрения. Обычным возражением против метаногенеза в сельском хозяйстве служит ссылка на необходимость использования навоза как органического удобрения. Эта ссылка не совсем точна, поскольку при метаногенезе происходит сокращение на ⅔ балластных органических веществ, отходящих в виде биометана и углекислоты, и соответственном сокращении транспортных расходов на вывоз удобрений на поля. Особенно выгоден термофильный вариант метаногенеза, который выполняет наиболее жесткие санитарные требования. Недостатком метаногенеза является его высокая стоимость как метода очистки органических стоков по сравнению с аэробной очисткой.
Таким образом, при самом скептическом отношении к возможностям «зеленого топлива», развитие анаэробных методов переработки органических отходов представляется беспроигрышным подходом.

Существует несколько вариантов комбинированных биогазовых установок, способствующей уменьшению использования биометана на собственные технологические нужды: ветроустановки, солнечные коллекторы. Их использование позволяет практически в 1,5 – 2 раза повысить КПД биогазовой системы. Это особенно актуально, если очищенный от СО2 биометан затем использовать в качестве моторного топлива для автотранспорта, или закачивать в существующие сети природного газа.

Аэробное сбраживание при компостировании осуществляется за счет использования атмосферного кислорода. Внесение удобрения, способствующее повышению роста растений, обеспечивает возврат использованного кислорода. Поэтому аэробный процесс можно считать в лучшем случае нейтральным с точки зрения воспроизводства (возобновления) кислорода, при условии использовании удобрений по назначению.
Удастся ли России ответить на вызовы, которые предъявляет сегодня мировая экономика? Особенно учитывая предельно жестокую мировую конкуренцию и борьбу за ресурсы? Без преувеличения, от решения этой задачи зависит сохранность органического топлива для будущего.

Описание комбинированной биогазовой установки [535,16 Kb] (cкачиваний: 555)
Осадчий Г. Б., инженер
Еженедельный мониторинг стоимости свинины в живом весе (на 17.11.2015)
Регион РФ Цена, руб./кг Изм. в руб.
Курская область 94.00 0,00
Белгородская область 93,0 0,00
Воронежская область 95.00 0,00
Пензенская область 98.00 0,00
Республика Мордовия 104,00 0,00
Республика Татарстан 105,00 0,00